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Scattering on fractal measures

Charles-Antoine Guerin† and Matthias Holschneider‡
Centre de Physique Théorique§, CNRS, Luminy, Case 907 F-13288 Marseille Cedex 9, France

Received 11 April 1996

Abstract. We study the one-dimensional potential-scattering problem when the potential is
a Radon measure with compact support. We show that the usual reflection and transmission
amplituder(p) and t (p) of an incoming wave eipx are well defined. We also show that the
scattering problem on fractal potentials can be obtained as a limit case of scattering on smooth
potentials. We then explain how to retrieve the fractal 2-wavelet dimension and/or the correlation
dimension of the potential by means of the reflexion amplituder(p). We study the particular case
of self-similar measures and show that, under some general conditions,r(p) has a large-scale
renormalization. A numerical application is presented.

1. Introduction

Scattering on fractal systems has been extensively studied during the last decade, because it
provides a powerful tool to characterize irregular surfaces or volumes. Consider an incoming
wave arriving on an obstacle with wave vectorpin and look at the scattered intensity
I (pin, pout) in the directionpout. It appears thatI (pin, pout) = I (q), whereq = pin −pout is
the momentum transfer. The scattered intensityI (q) is then usually connected to the fractal
properties of the obstacle. The most interesting result is the so-called power-law scattering,
which occurs at small-angle x-ray or neutron scattering. Rough materials are well modelled
by random fractals and the scattered intensity on such structures appears to scale with some
power ofq = |q|:

I (q) ∼ q−D (1.1)

where the exponentD is a fractal dimension of the system, depending on whether it is
a mass fractal, a surface fractal or a pore fractal (good surveys can be found in [Pfe85],
[Pfe88] or [Sin89]).

Surprisingly, things happen to be more complicated when one deals with non-random
fractals. Schmidt and Dacai [SD86] performed small-angle scattering on the Menger sponge
and observed some complicated behaviour of the scattered intensity which did not match
with a power law. Similarly, Allain and Cloitre [AC85] investigated the optical diffraction
on a deterministic fractal grating. By use of Fresnel’s formula, they computed the intensity
scattered by a bidimensional Cantor-like grating illuminated by a converging spherical wave.
They found that power-law scattering held in the averaged sense only:∫ q

q/3
dq ′I (q ′) ∼ q1−D
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whereD = log 2/ log 3 is the fractal dimension of the grating. Now look at the backscattered
intensityI (q) (figure 1) on a potential barrier in one dimension, where the potential is again
a Cantor-like feature (this will be made clearer in the following). The slope given by the
local maxima of the graph is−2, which is a trivial decrease specific to dimension one and
has nothing to do with the internal structure of the scattering potential. The ‘true’ power law
can only be observed after some suitable averages have been performed (figure 2). Thus,
it seems that the relevant quantity to look at is the integrated scattered intensity rather than
the scattered intensity itself. The classical result 1.1 may be only an artefact of randomness.

Figure 1. I (q) in log–log diagram for the triadic Cantor measure.

Figure 2.
∫ q

1 dp′p′2I (p′) in log–log diagram. The slope 0.37 ' 1 − log 2/ log 3 gives the
fractal dimension of the potential.

In this paper, we wish to make a detailed study of scattering on deterministic fractals
in the simple framework of one-dimensional potential scattering. Since we want to deal
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with potentials of very low regularity, we assume that the potentialV is not a function
anymore, but merely a measure. We show that a scattering problem can still be defined
in this case. We then retrieve some fractal properties of the potentials by means of the
averaged scattering data. In the particular case of self-similar potentials, we also show that
the scattering data admit a renormalization procedure linking the different energy scales.
The last section is devoted to a numerical illustration of the above results.

2. Scattering on measures

2.1. Scattering formalism in one dimension

Consider the one-dimensional Helmholtz equation(
d2

dx2
+ p2

)
9V,p = V 9V,p (2.1)

where V is a multiplication operator by some smooth real-valued functionV (x) with
compact support. By ‘smooth’ we mean thatV (x) is of regularityCk for somek > 0,
that isk times continuously differentiable onR. Left of the support ofV , the solution9V,p

of (2.1) has the form9V,p(x) = A eipx + B e−ipx . Right of the support, it has the same
form with other coefficients, say9V,p(x) = A′eipx + B ′e−ipx . The complex coefficients
A, B, A′ andB ′ are related by the so-called transfer matrixM(V , p):(

A

B

)
= M(V , p)

(
A′

B ′

)
.

For eachp, there are two complex numberstV (p) andrV (p) uniquely defined by(
1

rV (p)

)
= M(V , p)

(
tV (p)

0

)
.

The coefficientstV (p) andrV (p) are known as the transmission and reflexion amplitude,
respectively. They represent the specific response of the obstacleV to an ingoing wave
e+ipx , and satisfy the energy conservation|tV (p)|2 + |rV (p)|2 = 1. When no confusion is
possible, we shall omit in the following the dependance onV and simply writet (p) or r(p).

It can be shown that the Helmholtz equation (2.1) together with boundary conditions

9V,p(x) =
{

e+ipx + r(p) e−ipx x → −∞
t (p) e+ipx x → +∞ (2.2)

is equivalent to the Lippmann–Schwinger integral equation:

9V,p(x) = eipx +
∫

dy
eip|x−y|

2ip
V (y)9V,p(y). (2.3)

We wish to show that this equation can be solved in the more general framework of
potentials defined as measures. Therefore, let us introduceC0(R) the Banach space of
complex-valued continuous functions inR endowed with the norm‖φ‖∞ = supx∈R |φ(x)|.
Let M be the dual ofC0(R), the space of Radon measures. A strong topology onM may
be defined via the norm

‖µ‖ = sup
φ∈C0(R)\{0}

| ∫ φ dµ|
‖φ‖∞

=
∫

| dµ|.
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The weak topology ofM is induced by the linear functionalsµ → 〈µ, φ〉 ≡ ∫
φ dµ for

φ ∈ C0(R). We sayµ is real if

µ(φ) = µ(φ̄).

Finally we sayµ is positive if φ > 0 impliesµ(φ) > 0.
Now supposeV is a Radon measure with compact supportKV . The Helmholtz

equation (2.1) does not make sense as it stands. However, the Lippmann–Schwinger
equation still holds if we agree thatV (x) is the distribution such that∫

dx φ(x)V (x) =
∫

φ dV.

The Lippmann–Schwinger equation can be more clearly rewritten in an operator form

9V,p = 8p + Gp ∗ (V 9V,p) (2.4)

where we have setGp(x) = (1/2ip) e+ip|x| and 8p(x) = e+ipx, ∗ standing for the
convolution. The multiplication of a measure by a continuous function is a measure. The
convolution of a finite measure with a continuous function is again a continuous function.
Thus, it makes sense to seek a solution9V,p of (2.4) in C0(R). The solution actually exists
and is unique. Indeed, consider the following operator fromC0(R) into itself:

AV,p : φ 7→ Gp ∗ (V φ).

Since‖AV,p‖ 6 ‖V ‖/2p, the operator (1− AV,p) is invertible as soon asp > ‖V ‖/2, in
which case there is a unique continuous function

9V,p = (1 − AV,p)−18p

satisfying (2.4). This function is given explicitly by the Neumann series

9V,p =
∞∑

n=0

An
V,p8p

which converges uniformly inC0(R). If we let x → +∞ in (2.3) and identify with (2.2),
we obtain integral expressions for the reflection and transmission amplitude:

r(p) = 1

2ip

∫
dy eipy9V,p(y)V (y)

t (p) = 1 + 1

2ip

∫
dy e−ipy9V,p(y)V (y). (2.5)

Therefore, for a compactly supported Radon measureV the scattering problem has a
well-defined meaning since there exists continuous functions9V,p, rV (p) andtV (p) as soon
asp > ‖V ‖/2. Of course, since any smooth function with compact support can be identified
with a measure, this also holds for smooth potentials. Note that, in this case, the solution
is actually of higher regularity: ifV is Ck, we know by Weyl’s lemma (see e.g [RS]) that
9V,p is at leastCk+1.

We are now going to show that the scattering problem on irregular potentials can be
obtained as limiting case of scattering on smooth potentials.

First we need the following.

Lemma 2.1. Let λ > 0 and defineMλ,K as the subset of Radon measures with norm less
thanλ and support contained inK. Then the three (nonlinear) operators

Mλ,K → C0(R) Mλ,K → C Mλ,K → C
V 7→ 9V,p V 7→ rV (p) V 7→ tV (p)

are compact for anyp > λ/2, in the sense that they map weakly convergent sequences into
strongly convergent sequences.
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As an immediate consequence we have

Proposition 2.1. For all V in M, there exists a sequence of compactly supported smooth
functionsVn ∈ C∞

0 , such that, for allp > ‖V ‖/2,

s − lim
n→∞ 9Vn,p = 9V,p lim

n→∞ rVn
(p) = rV (p) lim

n→∞ tVn
(p) = tV (p).

Proof. Let h be a compactly supportedC∞ function such that 06 h 6 1 and
∫

h = 1,
and sethn(x) = nh(nx). The sequencehn is an approximate identity andVn = hn ∗ V

converges toV in the weak topology ofM. Moreover,Vn is uniformly bounded by‖V ‖.
Hence, the direct application of lemma (2.1) states the proof. �

An important consequence is that the conservation of energy still holds for potentials
defined as measures:

∀p > ‖V ‖/2 |rV (p)|2 + |tV (p)|2 = 1.

Indeed, this identity holds for smooth potentials and by the proposition we may go to the
limit.

Proof of lemma 2.1. Take someV in Mλ,K and a weakly convergent sequenceVn → V

in Mλ,K . We first show that‖χK(9Vn,p − 9V,p)‖∞ → 0, whereχK is the characteristic
function of K. Setf j = χKAj

V,p8p andf
j
n = χKAj

Vn,p
8p. Then

‖χK(9Vn,p − 9V,p)‖∞ =
∥∥∥∥ ∞∑

j=0

(f j
n − f j )

∥∥∥∥
∞

6
N∑

j=0

‖f j
n − f j‖∞ + 2

∞∑
j=N+1

(
λ

2p

)j

.

By takingN to infinity, we can make the second term on the right-hand side as small as we
want, independently ofn. Thus, it suffices to prove the vanishing of each term‖f j

n −f j‖∞
separately whenn → ∞. This is clearly the case ofj = 0. Now we proceed by recurrence.
Assume‖f j

n − f j‖∞ → 0 for somej > 1. Then, noting thatf j+1 = χKAV,pf j and
f

j+1
n = χKAV,pf

j
n , we have

|f j+1
n − f j+1| 6 χK |AVn,p(f j

n − f j )| + χK |(AVn,p − AV,p)f j |
6 λ/2p‖f j

n − f j‖∞ + χK |Gp ∗ (Vn − V )f j |.
By hypothesis, the sequence of functionsχK(x)|Gp ∗(Vn−V )f j (x)| converges pointwise to
zero. Since all these functions have their support on the same compactK, the convergence
is uniform. Thus‖f j+1

n − f j+1‖∞ → 0 and the recurrence is proved.
Then, sincep > λ/2,

rVn
(p) − rV (p) =

∫
dx eipxVn(x)(9Vn,p(x) − 9V,p(x))

+
∫

dx eipx(Vn(x) − V (x))9V,p(x)

and we have

lim
n→∞ |rVn

(p) − rV (p)| 6 lim
n→∞ λ‖χK(9Vn,p − 9V,p)‖∞ + lim

n→∞ |〈Vn − V, 8p9V,p〉| = 0

and similarly for|tVn
(p) − tV (p)|. Finally, since by (2.2),

‖(1 − χK)(9Vn,p − 9V,p)‖∞ 6 max{|rVn
(p) − rV (p)|, |tVn

(p) − tV (p)|}
we also have limn→∞ ‖9Vn,p − 9V,p‖∞ = 0. This completes the proof. �
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Now let us estimate the reflection amplitude. In view of (2.5),r(p) can be written as
a series

r(p) =
∞∑

n=1

ρn(p)

with

ρn(p) = 1

2ip

∫
dy 8p(y)An−1

V,p 8p(y).

The first termρ1(p) is simply given by

ρ1(p) = 1

2ip
V̂ (−2p) (2.6)

whereV̂ is the Fourier transform ofV :

V̂ (ξ) =
∫

dx e−iξxV (x).

ρ1(p) is called the Born approximation for the reflection amplitude. The contribution of
the higher-order terms can be estimated. A straightforward calculation shows that∣∣∣∣ ∞∑

n=1

ρn(p)

∣∣∣∣ 6 O

(
1

p2

)
that is

r(p) = V̂ (−2p)

2ip
+ O

(
1

p2

)
. (2.7)

Recall that the notationf = O(g) means∀x, f (x) 6 Cg(x) for some positive
constantC.

Figure 3. |V̂ (p)|2 for V the triadic Cantor measure.
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2.2. Recovering some fractal dimensions

As we have seen, the reflection and transmission amplitude are closely linked to the Fourier
transform of the potential. For smooth potentials, the Fourier transform vanishes at high
frequencies and so scattering data have a trivial asymptotic behaviour. However, for some
singular potentials (see e.g figure 3), the Fourier transform never ceases to oscillate. This
induces an apparently chaotic behaviour in the scattering data.

However, theL2-Fourier asymptotic of finite measures follow a general drift, which
is governed by their fractal 2-wavelet dimension [Hol94a]. For positive measures, the 2-
wavelet dimension reduces to the classical correlation dimension, which is perhaps better
known. One of the usual definitions of this last dimension is the following [Pes93].

For any positive measureV , define the function

�V (r) =
∫

dV (x)V (B(x, r))

whereB(x, r) is the ball of radiusr around the pointx. The quantities

D+(V ) = lim sup
r→0

log�V (r)

logr
D−(V ) = lim inf

r→0

log�V (r)

logr

are called the upper and lower correlation dimension ofV , respectively. WhenD−(V ) and
D+(V ) coincide, we writeD(V ) for their common value and call it simply the correlation
dimension. Heuristically, these dimensions indicate the rate of correlation of the measure.
Indeed, supposeV is a probability measure. Then, if you pick randomly two pointsx1 and
x2 according to the lawV , the probability that they are closer thanε is given by

Proba(|x1 − x2| < r) =
∫

dV (x) dV (y) 1|x−y|<r

=
∫

dV (x) dV (y) 1y∈B(x,r)

=
∫

dV (x)V (B(x, r))

= �V (r).

For positive finite measures, it was shown in [GH95a] that theL2-Fourier asymptotic is
governed by the correlation dimensions. Precisely, we have

Lemma 2.2. ([GH95a]) For any finite positive Radon measureV on R,

lim sup
p→∞

log(
∫

06ξ6p
dξ |V̂ (ξ)|2)

logp
= 1 − D−(V )

lim infp→∞
log(

∫
06ξ6p

dξ |V̂ (ξ)|2)
logp

= 1 − D+(V ).

For signed measures, the correlation dimensions are not sufficient to characterize the Fourier
asymptotic. The relevant dimensions in this case are the upper and lower wavelet dimensions
κ±

2 introduced in [Hol94a]. They are defined via the following procedure: take some
function g in S+, that is a function in the Schwartz class whose Fourier transform is
supported by positive frequencies only, and consider the wavelet transform ofV with
respect tog,

WgV (b, a) = (g̃a ∗ V )(b)
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whereg̃a(x) = a−1ḡ(−a−1x) is essentially a dilated version ofg. Now set

Gg(a) =
∫

db|WgV (b, a)|2

and

0g(a) = min

{ ∫ 1

a

dα

α
Gg(α),

∫ a

0

dα

α
Gg(α)

}
.

Then the 2-wavelet dimensionsκ±
2 (V ) are defined as

κ+
2 (V ) = lim sup

a→0

log0g(a)

loga
κ−

2 (V ) = lim inf
a→0

log0g(a)

loga

and do not depend on the chosen functiong in S+ provided g 6= 0. They satisfy the
following

Lemma 2.3. ([Hol94a]) If V is a finite complex Radon measure, then

V /∈ L2(R) and


lim sup
p→∞

log(
∫

06ξ6p
dξ |V̂ (ξ)|2)

logp
= −κ−

2 (V )

lim inf
p→∞

log(
∫

06ξ6p
dξ |V̂ (ξ)|2)

logp
= −κ+

2 (V )

or

V ∈ L2(R) and


lim sup
p→∞

log(
∫
ξ>p

dξ |V̂ (ξ)|2)
logp

= −κ−
2 (V )

lim inf
p→∞

log(
∫
ξ>p

dξ |V̂ (ξ)|2)
logp

= −κ+
2 (V ).

The next theorem is a direct application of lemma 2.3.

Theorem 2.4. Let V be a finite, real Radon measure with compact support and letp0 be
some real number greater than‖V ‖/2. Then eitherV /∈ L2(R) and

lim sup
p→∞

log
∫ p

p0
dp′p′2|r(p′)|2
logp

= −κ−
2 (V ) (= 1 − D−(V ) if V > 0)

lim inf
p→∞

log
∫ p

p0
dp′p′2|r(p′)|2
logp

= −κ+
2 (V ) (= 1 − D+(V ) if V > 0)

or V ∈ L2(R) and the previous limits are zero.

Proof. The proof is elementary but we give it anyway for the convenience of the reader.
Take somep0 > ‖V ‖/2 and define the functions

I (p) =
∫ p

p0

dp′p′2|r(p′)|2

J (p) =
∫ p

p0

dξ |V̂ (ξ)|2.

It suffices to show that

lim sup
p→∞

logI (p)

logp
= lim sup

p→∞
logJ (p)

logp
lim inf
p→∞

logI (p)

logp
= lim inf

p→∞
logJ (p)

logp
. (2.8)
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Figure 4. The first steps of the construction of a Cantor measure.

From equation (2.7), we have

I (p) = J (p) + O(logp).

Now log(x + y) = logx + O(y/x) and thus

logI (p)

logp
= logI (p)

logp
+ O

(
1

J (p)

)
. (2.9)

SinceJ (p) is an increasing function, it either converges to some positive constant or goes
to infinity. If it converges, thenI (p) = O(logp) and

lim
p→∞

logI (p)

logp
= lim

p→∞
logJ (p)

logp
= 0.

If J (p) diverges, then (2.8) follows from (2.9). �

3. Scattering on self-similar measures

We now consider the case of a potential given by a self-similar measure. A self-similar
measure onR was defined by Hutchinson [Hut81] to be a probability measureV satisfying

Condition 3.A. (Self-similarity equation.)V = ∑N
i=1 piV B S−1

i

where thepi are a set of weights (0< pi < 1,
∑N

i=1 pi = 1) and theSi a set of similarities
Si(x) = lix + bi , with 0 < li < 1. The support ofV is the unique non-empty compactK

globally invariant under these contractions, i.e.K = ∪N
i=1Si(K). This support may be of

zero Lebesgue measure. This occurs when the following condition is satisfied.

Condition 3.B. (Strong open set condition [Str93].) There exists a closed bounded setU

such thatSi(U) ∩ Sj (U) = 0 for i 6= j .
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Figure 5. log3 |r(p)|2 against log3(p) for the standard triadic Cantor measure (p1 = p2 =
1
2 , l1 = l2 = 1

3), whose correlation dimension isD = log 2/ log 3 ∼ 0.63. Although the curve
seems to follow a general drift, the linear regression is very bad (ρ = 0.531) and gives anyway
a wrong dimension:A ' −3.72 � −2D. Besides, note how the self-similar structure reappears
in the triadic blocks [3m, 3m+1], m = 1, 2, . . ..

Figure 6. log3(
∫ p

1 dp′p′2|r(p′)|2) against log3(p). Once|r(p)|2 has been integrated, it gives
the right correlation of the Cantor measure:A ' 0.372' 1 − D, with ρ = 0.992.

It can be shown that the setU at least containsK. For measures satisfying condition (3.B),
the upper and lower correlation dimension coincide (D+ = D− = D) and are given by the
implicit equation (see e.g [GH95b]):

N∑
i=1

p2
i l

−D
i = 1. (3.1)

This implies, in particular, that 0< D < 1. If, furthermore:

Condition 3.C. (Equicontractivity condition.) All the contraction ratios are equal, that is
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Figure 7. log3 |r(p)|2 against log3(p) for the triadic Cantor measure with weightsp1 = 1
4

and p2 = 3
4 . Again, the linear regression gives a wrong dimensionD ' 0.542 whereas the

theoretical dimension is 0.428.

Figure 8. log3(
∫ p

1 dp′p′2|r(p′)|2) against log3(p). The linear regression gives an excellent
approximation of the correlation dimension:A ' 0.578' 1 − D, with ρ = 0.998.

li = l, i = l, . . . , N ,

thenD is given explicitly by

D = log
∑N

i=1 p2
i

log l
.

The casep1 = p2 = 1
2 and l1 = l2 = 1

3 reduces to the well known triadic Cantor measure
whose dimension isD = log 2/ log 3.

TheL2-Fourier asymptotic of self-similar measures has been studied in [Str90], [Str93]
and [LW93]. The last authors stated the most general result. They showed (among other
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Figure 9. Same as figure 7 but the weightsp1 andp2 are randomly exchanged at each stage of
the construction of the measure with probability a half. The theoretical correlation is unchanged:
D = 0.428. The experimental dimension (0.469 = −A − 2 with ρ = 0.963) is still wrong;
however, the smoothing effect of randomness makes it closer to the theoretical dimension.

Figure 10. log3(
∫ p

1 dp′p′2|r(p′)|2) against log3(p). A ' 0.578' 1 − D, with ρ = 0.997.

things) that if the strong open set condition holds (the needed condition is actually more
general), then

∫
06ξ6R

dξ |V̂ (ξ)|2 ∼ R1−D (3.2)

where the notationf ∼ g meansCf 6 g 6 C ′f for someC ′ > C > 0. An immediate
consequence is:



Scattering on fractal measures 7663

Proposition 3.1. If V satisfies conditions 3.A, 3.B and 3.C, then∫ p

p0

dp′p′2|r(p′)|2 ∼ p1−D

whereD is given by (3.1).

We wish now to show that the self-similar nature of the scatterer can be recovered in the
scattering data. As was first shown in [Hol94b] in the case of the triadic Cantor measure, the
self-similarity of measures allows a renormalization procedure for their Fourier transform.
Let us introduce the following definition. A tempered distributionη ∈ S ′(R) is said to
have a large-scale renormalization if there existsβ ∈ C, α > 1 and a non-zero distribution
η∗ ∈ S ′(R) such that

w∗ − lim
n→∞ βnη(αn·) = η∗

the convergence taking place in the weak-∗ topology ofS ′(R). Conversely, a distributionη
is said to have a small-scale renormalization aroundx0 if for β ∈ C, α < 1 andη∗ 6= 0 ∈ S ′

w∗ − lim
n→∞ βnη(αn(· − x0) + x0) = η∗.

In order to obtain a result concerning the renormalization of the scattering amplitude
we have to suppose that the following condition holds forV .

Condition 3.D. V ∗ Ṽ satisfies the strong open set condition, whereṼ (x) = V (−x).

We have the following result.

Theorem 3.1. Let V be a self-similar measure satisfying conditions 3.A and 3.B. ThenV

has a small-scale renormalization around each fixed pointxi = −bi/ li of the similaritiesSi .
Consequently, eixiξ V̂ (ξ) has a large-scale renormalization. If, furthermore, conditions 3.C
and 3.D hold, then|V̂ |2 has a large-scale renormalization. Precisely, we have that
(
∑N

i=1 p2
i )

−n|V̂ (l−n·)|2 converges inS ′(R).

Proof. The measureV satisfies, in the sense of the distributions,

V (x) =
N∑

i=1

pi

li
V B S−1

i (x).

If we fix someSi , we have

li

pi

V B Si(x) − V (x) =
∑
j 6=i

lipj

ljpi

V B S−1
j B Si(x)

and consequently(
li

pi

)n+1

V B Sn+1
i −

(
li

pi

)n

V B Sn
i =

∑
j 6=1

ln+1
i pj

ljp
n+1
i

V B S−1
j B Sn+1

i (x)

for all integern. Now the strong open set condition implies thatS−1
i B Sj (K) ∩ K = ∅ for

all i 6= j , whereK is the support ofV . ThusS−n−1
i BSj (K)∩S−n

i (K) = ∅ for all integern,
that is

supp

((
li

pi

)n+1

V B Sn+1
i −

(
li

pi

)n

V B Sn
i

)
∩ S−n

i (K) = ∅. (3.3)
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Now take someϕ in S(R) and define

an =
(

li

pi

)n ∫
dxV B Sn

i (x)ϕ(x).

Let us show thatan is a converging sequence. Clearly, we have

an+1 =
(

li

pi

)n+1 { ∫
x∈S−n

i (K)

+
∫

x∈S−n−1
i (K)\S−n

i (K)

}
dxV B Sn+1

i (x)ϕ(x)

that is, in view of (3.3),

an+1 − an =
(

li

pi

)n+1 ∫
x∈S−n−1

i (K)\S−n
i (K)

dxV B Sn+1
i (x)ϕ(x). (3.4)

At this point, supposeϕ is of compact support. Then we can find some integerN , such
that for all n > N , x ∈ S−n−1

i (K)\S−n
i (K) ∩ supp(ϕ) = ∅, in which case the right-hand

side vanishes andan+1 = an. This means that(li/pi)
nV BSn

i converges inD′(R) = C∞′
0 (R)

towards some distributionV ∗
i . Now the primitive ofV ∗

i is polynomially bounded. Indeed,
for any R > 0 and any integern such that supp(V ∗

i ) ∩ [−R, +R] ⊂ S−n
i (K), we have∫

|x|6R

V ∗
i (x) dx 6

∫
x∈K

dxV (x) +
∫

x∈S−1
i (K)

dx
li

pi

V B Si(x) + · · ·

· · · +
∫

x∈S−n
i (K)

dx

(
li

pi

)n

V B Sn
i (x) = 1 + p−1

i + · · · + p−n
i .

Sincen ∼ − logR/ log li , this yields∣∣∣∣∫|x|6R

V ∗
i (x) dx

∣∣∣∣ 6 ORlogpi/ log li .

Consequently,V ∗
i is a tempered distribution. It follows that the convergence of(li/pi)

nV BSn
i

can be extended toS ′(R) because ifϕ ∈ S(R), then

an+1 − an 6 sup
x∈S−n−1

i (K)\S−n
i (K)

∫
x∈S−n−1

i (K)

dxV ∗
i (x) 6 O(lnm

i ) ∀m ∈ N

and (an) is a Cauchy, therefore converging, sequence inC.
SinceSn

i = lni (x − xi) + xi , this means thatV has a small-scale renormalization around
xi . We only need to take the Fourier transform (in the sense of distributions) to obtain a
renormalization forV̂ :

p−n
i eil−n

i xi ξ V̂ (l−n
i ξ) → eixiξ V̂ ∗

i (ξ ).

Now for the second part of the proof, it is easy to see that ifV is equicontractive, then
V ∗ Ṽ is still self-similar with

V ∗ Ṽ =
∑
i 6=j

pipjV ∗ Ṽ B S−1
i,j + σV ∗ Ṽ B S−1

0

with Si,j (x) = lx + bi − bj , S0(x) = lx, andσ = ∑
p2

i . If condition 3.D holds, thenV ∗ Ṽ

has a small-scale renormalization around 0, the fixed point ofS0,

w∗. lim
n→+∞

(
l

σ

)n

(V ∗ Ṽ )(ln·) = η

for someη in S ′. Passing to the Fourier transform gives, for allϕ in S,

lim
n→+∞ σn|V̂ (l−n·)|2(ϕ) = η̂(ϕ) (3.5)

that is |V̂ |2 has a large-scale renormalization. �
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We wish to apply this result to|r(p)|2 ∼ |V̂ (2p)|2/p2. However, the space of large-
scale renormalizable functions is not stable under multiplication by homogeneous functions
pλ, λ 6 −1. To remedy this problem, we restrict the space of test functions. We define
Spos(R) the subset ofS(R) of functions with support inR+ only and we consider the
renormalization inS ′

pos(R) rather thanS ′(R). Sincer(p) is a priori not entirely defined on
R+, we extend it by settingr(p) = 0 if p 6 ‖V ‖/2. Then, we have:

Proposition 3.2. Assume conditions 3.A, 3.B, 3.C and 3.D to hold. Then|r(p)|2 has
a large-scale renormalization inS ′

pos(R). Precisely, we have that(l2 ∑N
i=1 p2

i )
−n|r(l−n·)|2

converges inS ′(R).

Proof. Take some functionϕ in Spos(R). By (2.7) we have∫
dp l−2nσ−n|r(l−np)|2ϕ(p)

= σ−n

∫
dp

|V̂ (l−np)|2
p2

ϕ(p) + l−2nσ−n

∫
dp ϕ(p)ε(l−np)

where|ε(p)| 6 O(1/p3) is the error term. Let us callIn andJn the first and second terms
of the right-hand side, respectively. By (3.5),In converges towardŝη(ϕ/p2). On the other
hand, we have

|Jn| 6 lnσ−nO

( ∫
dp

∣∣∣∣ϕ(p)

p3

∣∣∣∣).

Now σ = ∑N
i=1 pi2 >

∑N
i=1 N−2 = N−1, whereas the strong open set condition imposes

l < N−1. Thuslσ−1 < 1 andJn → 0. Hence,

(l2σ)−n|r(l−n·)|2(ϕ) → R∗(ϕ)

whereR∗(ϕ) = η̂(ϕ/p2). This completes the proof. �

4. A numerical procedure

We now wish to illustrate some of the above results with a numerical experiment in the basic
case of self-similar potentials. In particular, we want to insist on the fact that the correlation
dimension of the potential can only appear via an integration of the scattered intensity. To
be more precise, suppose the potential is modelled by the triadic Cantor measureVc, Its
Fourier transform is given by the infinite product

V̂c(p) =
∞∏

j=0

cos(3−jπp).

Now |V̂c|2 has a local maximum|V̂c(π)|2 at every pointp = 3nπ and a local minimum 0
at every pointp = 3n(π/2)n ∈ N. Consequently, lim sup(log |r(p)|2/ log(p)) = −2 and
lim sup(log |r(p)|2/ log(p)) = −∞, that is only the trivial behaviour of|r(p)|2 may appear.

We are going to describe a numerical procedure to compute the exact reflected amplitude
on self-similar potentials. Since these latter are ideal mathematical objects, we can only
approach them by constructing ‘finite’ fractals, that is measures involving a finite number
of iterations. More precisely, consider a self-similar measureV satisfying the strong open
set condition and

V (x) =
N∑

i=1

pi

li
V B S−1

i (x) (4.1)
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for a set of weights{pi} and similaritiesSi(x)= li(x−xi)+xi , with x1= 0 < x2.. < xN = 1.
Now take χ the characteristic function of the unit interval and form thenth order
approximation:

V0 = χ

Vn(x) = 6N
i1,...,in=1

pi1

li1

· · · pin

lin
χ B S−1

in
B · · · B S−1

i1
(x).

It can be shown thatw − lim Vn = V , n → ∞, and‖Vn‖ = ‖V ‖ = 1. Thus, in view
of section 2,rVn

(p) → rV (p).
Now, since the approximated measuresVn are piecewise constant functions, we can

computerVn
(p) with the method of transfer matrices. Each transfer matrixM(Vn, p) can

be decomposed into a product ofNn elementary transfer matrices corresponding to each
square part of the potential. Rather than computingNn matrices, we shall here make use of
the self-similarity of the potential. Looking at the self-similarity equation (4.1), we see that
annth-order approximation ofV is a sum ofN disjoint measures being the(n − 1)th-order
approximations of(pi/ li)V B S−1

i , i = 1, . . . , N . So we have, with obvious notation,

M(Vn, p) = M
(

pN

lN
(V B S−1

i )n−1,p

)
. . .M

(
p1

l1
(V B S−1

i )n−1, p

)
the transfer matrix on the zero-order approximations being known analytically. Thus, for
eachn, the transfer matrixM(Vn, p) can easily be computed by a recursive procedure. This
gives a numerical expression forrVn

(p). Now let us retrieve the correlation dimension via
the reflection amplitude. Therefore, we need to estimate the error induced by annth-order
approximation. It has been shown in [Gue95] that

||rVn
(p)|2 − |r(p)|2| 6 4ln

p
+ O

(
1

p3

)
. (4.2)

This yields ∣∣∣∣ ∫ p

1
dp′p′2|rVn

(p′)|2 −
∫ p

1
dp′p′2|rV (p′)|2

∣∣∣∣ 6 O(lnp2) + O(1).

On the other hand, we know from (3.2) that
∫ p

1 dp′p′2|rV (p′)|2 is of orderp1−D. Thus,
takingln � p−2, we are ensured that the relative error we commit is negligible. In figures 5–
8 we show an application of this method to the triadic Cantor measure. A comparison is
drawn with random self-similar measures. On each figure, we have made a linear regression
y = Ax + B and indicated the coefficient of correlationρ.
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