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Scattering on fractal measures

Charles-Antoine Guerinand Matthias Holschneider
Centre de Physique ®Boriqu¢, CNRS, Luminy, Case 907 F-13288 Marseille Cedex 9, France

Received 11 April 1996

Abstract. We study the one-dimensional potential-scattering problem when the potential is
a Radon measure with compact support. We show that the usual reflection and transmission
amplituder(p) and¢(p) of an incoming wave ie* are well defined. We also show that the
scattering problem on fractal potentials can be obtained as a limit case of scattering on smooth
potentials. We then explain how to retrieve the fractal 2-wavelet dimension and/or the correlation
dimension of the potential by means of the reflexion amplitugg. We study the particular case

of self-similar measures and show that, under some general conditignshas a large-scale
renormalization. A numerical application is presented.

1. Introduction

Scattering on fractal systems has been extensively studied during the last decade, because it
provides a powerful tool to characterize irregular surfaces or volumes. Consider an incoming
wave arriving on an obstacle with wave vectpy, and look at the scattered intensity

I (pin, Poun) In the directionpoy. It appears thal (pin, pou) = 1(q), Whereq = pin — pout IS

the momentum transfer. The scattered intenkiky) is then usually connected to the fractal
properties of the obstacle. The most interesting result is the so-called power-law scattering,
which occurs at small-angle x-ray or neutron scattering. Rough materials are well modelled
by random fractals and the scattered intensity on such structures appears to scale with some
power ofg = |q|:

1@ ~q" (1.1)
where the exponenb is a fractal dimension of the system, depending on whether it is
a mass fractal, a surface fractal or a pore fractal (good surveys can be found in [Pfe85],
[Pfe88] or [Sin89]).

Surprisingly, things happen to be more complicated when one deals with non-random
fractals. Schmidt and Dacai [SD86] performed small-angle scattering on the Menger sponge
and observed some complicated behaviour of the scattered intensity which did not match
with a power law. Similarly, Allain and Cloitre [AC85] investigated the optical diffraction
on a deterministic fractal grating. By use of Fresnel’'s formula, they computed the intensity
scattered by a bidimensional Cantor-like grating illuminated by a converging spherical wave.
They found that power-law scattering held in the averaged sense only:

q
dg'1(q") ~ ¢ "
q/3
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whereD = log 2/ log 3 is the fractal dimension of the grating. Now look at the backscattered
intensity 7 (¢) (figure 1) on a potential barrier in one dimension, where the potential is again

a Cantor-like feature (this will be made clearer in the following). The slope given by the
local maxima of the graph is-2, which is a trivial decrease specific to dimension one and
has nothing to do with the internal structure of the scattering potential. The ‘true’ power law
can only be observed after some suitable averages have been performed (figure 2). Thus,
it seems that the relevant quantity to look at is the integrated scattered intensity rather than
the scattered intensity itself. The classical result 1.1 may be only an artefact of randomness.
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Figure 1. I1(g) in log—log diagram for the triadic Cantor measure.
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Figure 2. [ dp’p”I(p’) in log-log diagram. The slope.37 ~ 1 — log2/log3 gives the
fractal dimension of the potential.

In this paper, we wish to make a detailed study of scattering on deterministic fractals
in the simple framework of one-dimensional potential scattering. Since we want to deal
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with potentials of very low regularity, we assume that the poteritiab not a function
anymore, but merely a measure. We show that a scattering problem can still be defined
in this case. We then retrieve some fractal properties of the potentials by means of the
averaged scattering data. In the particular case of self-similar potentials, we also show that
the scattering data admit a renormalization procedure linking the different energy scales.
The last section is devoted to a numerical illustration of the above results.

2. Scattering on measures

2.1. Scattering formalism in one dimension

Consider the one-dimensional Helmholtz equation

d2
(dx2 " ”2) Yy = Vv (2.1)

where V is a multiplication operator by some smooth real-valued functitix) with
compact support. By ‘smooth’ we mean thidtx) is of regularity C* for somek > 0,
that isk times continuously differentiable dR. Left of the support o, the solution¥y ,

of (2.1) has the form¥y ,(x) = A€P* + Be 'P*. Right of the support, it has the same
form with other coefficients, sayy ,(x) = A’€?* + B’e”'?*. The complex coefficients
A, B, A’ and B’ are related by the so-called transfer matixV, p):

A A’
(3) w3

For eachp, there are two complex humbeng(p) andry (p) uniquely defined by

1 _ ty(p)
(w(m) =M, p’( 0 )

The coefficientsy (p) andry (p) are known as the transmission and reflexion amplitude,
respectively. They represent the specific response of the obdtatbean ingoing wave
et’P* and satisfy the energy conservatipp(p)|> + |ry(p)|?> = 1. When no confusion is
possible, we shall omit in the following the dependance/amd simply writez (p) or r(p).

It can be shown that the Helmholtz equation (2.1) together with boundary conditions

gtire 4 r(p) g irx X — —00
\I/V,p(x) = Lipx (22)
t(p)e'? x — 400
is equivalent to the Lippmann—Schwinger integral equation:
, gyl
Wy ,(x) =P +/ dy 2 V)W, (). (2.3)

We wish to show that this equation can be solved in the more general framework of
potentials defined as measures. Therefore, let us introdi¢B) the Banach space of
complex-valued continuous functions Inendowed with the norniig || = Sup,cg 1¢ (x)|.

Let M be the dual ofC°(R), the space of Radon measures. A strong topology+omay
be defined via the norm

| [ & dul
lull = sup ”’:/mm.
peco@n(o) 1Plleo
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The weak topology of\ is induced by the linear functionals — (u, ¢) = [ ¢ du for
¢ € CO(R). We sayyu is real if
1(@) = w(@).
Finally we saypu is positive if ¢ > 0 impliesu(¢) > 0.
Now supposeV is a Radon measure with compact suppé&it. The Helmholtz

equation (2.1) does not make sense as it stands. However, the Lippmann—-Schwinger
equation still holds if we agree th&t(x) is the distribution such that

/dx¢(x)V(x) = /¢dv.
The Lippmann—Schwinger equation can be more clearly rewritten in an operator form

Wy, =®,+G,*x(V¥y ) (2.4)
where we have seG,(x) = (1/2ip)e"?*l and ®,(x) = €'’ x standing for the
convolution. The multiplication of a measure by a continuous function is a measure. The
convolution of a finite measure with a continuous function is again a continuous function.
Thus, it makes sense to seek a solution, of (2.4) in C°(R). The solution actually exists
and is unique. Indeed, consider the following operator flGNR) into itself:

Ay p o= Gy (V).
Since |l Av,,ll < IIVIl/2p, the operator (- Ay ,) is invertible as soon ap > ||V ||/2, in
which case there is a unique continuous function

Wy, =1- Ay, o,
satisfying (2.4). This function is given explicitly by the Neumann series

00
_ n
\I‘V,P - ZAV,pCDP
n=0

which converges uniformly il€°(R). If we let x — +oc in (2.3) and identify with (2.2),
we obtain integral expressions for the reflection and transmission amplitude:

1 ..
r(p) = %/dyé”"l’v,p(y)V(y)

1 .
t(p) =1+ T/dy e Py ,(NV(y). (2.5)
ip

Therefore, for a compactly supported Radon measunhe scattering problem has a
well-defined meaning since there exists continuous functiong, ry (p) andty (p) as soon
asp > |V||/2. Of course, since any smooth function with compact support can be identified
with a measure, this also holds for smooth potentials. Note that, in this case, the solution
is actually of higher regularity: i is C*, we know by Weyl's lemma (see e.g [RS]) that
Uy, is at leastC*+1,

We are now going to show that the scattering problem on irregular potentials can be
obtained as limiting case of scattering on smooth potentials.

First we need the following.

Lemma 2.1 Letx > 0 and defineM; g as the subset of Radon measures with norm less
than A and support contained iK. Then the three (nonlinear) operators

Mk — CO(R) Mk = C Mk — C

Vi vy, Vi ry(p) Vi ty(p)

are compact for any > A/2, in the sense that they map weakly convergent sequences into
strongly convergent sequences.
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As an immediate consequence we have

Proposition 2.1 For all vV in M, there exists a sequence of compactly supported smooth
functionsV, € C§°, such that, for allp > ||V|/2,

s— lim Wy, =Wy, lim ry (p) =rv(p) lim ty (p) = tv(p).
n—00 n—00 n—oo

Proof. Leth be a compactly supported™ function such that 6 A < 1 and /[ i = 1,
and seth,(x) = nh(nx). The sequence, is an approximate identity and, = s, x V
converges tdV in the weak topology ofM. Moreover,V, is uniformly bounded by V.
Hence, the direct application of lemma (2.1) states the proof. O

An important consequence is that the conservation of energy still holds for potentials
defined as measures:

Vp > VI/2 lrv (P + v (p) 1 = 1.
Indeed, this identity holds for smooth potentials and by the proposition we may go to the
limit.
Proof of lemma 2.1 Take someV in M, x and a weakly convergent sequeri¢ge— V
in M, k. We first show thaf|xx (W, , — ¥v,,)llc = 0, whereyx is the characteristic
function of K. Setf/ = xx Ay ,®, and f;/ = xx Ay, ,®,. Then

(o) N 00 J
S| <SIf - flet2 Y (k)
j=0 o j=0 2p

Jj=N+1
By taking N to infinity, we can make the second term on the right-hand side as small as we
want, independently of. Thus, it suffices to prove the vanishing of each tdirfid — /||
separately when — oo. This is clearly the case gf = 0. Now we proceed by recurrence.
Assume| fi/ — f/llc — O for somej > 1. Then, noting thatf/*! = xx.Ay ,f/ and

> .
T = xx Av., fi, we have

L= P < el A, p U = DL 2l (A, p = Avp) ]
SAL2pIfT = Fllloo + xk1Gp * (V, — V) f1].

By hypothesis, the sequence of functigns(x)|G, *(V, — V) f/ (x)| converges pointwise to
zero. Since all these functions have their support on the same cokip#ioe convergence
is uniform. Thus|| £/ ™ — £/+1||., — 0 and the recurrence is proved.

Then, sincep > A/2,

Ixx (Wv,.p = Vv plllee =

ro(p) = ry (p) = / dr €77V, () (y, () — Uy, ()

+ [ dre @ w - Ve,
and we have
im [y, (p) = rv(p)L < M Aixx (W, p = $v p)lleo + M [V, =V, @, Wy ;)| =0
and similarly for|zy, (p) — ty(p)|. Finally, since by (2.2),

11— Xxx) (W, p = Yy pllee < MaX]ry,(p) —rv(p)l, Itv,(p) — tv(p)[}
we also have linL, o | Wy, , — ¥y ,llc = 0. This completes the proof. O
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Now let us estimate the reflection amplitude. In view of (2/5)) can be written as
a series

r(p) = pu(p)
n=1
with
1 n—1
Pn(p) = E/dy D, (NAY Py (y).
The first termpy(p) is simply given by

1 .
p1(p) = 2.—V(—2p) (2.6)
ip

whereV is the Fourier transform o¥’:
VE) = /dxe’ifo(x).

p1(p) is called the Born approximation for the reflection amplitude. The contribution of
the higher-order terms can be estimated. A straightforward calculation shows that

= 1
an(p)‘ <0 (2>
n=1 p

that is

V(=2 1
r(p) = (2ipp) +0 (pz> . @.7)

Recall that the notationf = O(g) meansVx, f(x) < Cg(x) for some positive
constantC.

i faal Aaadl a A
50 100 160 200 250

Figure 3. |\A/(p)|2 for V the triadic Cantor measure.
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2.2. Recovering some fractal dimensions

As we have seen, the reflection and transmission amplitude are closely linked to the Fourier
transform of the potential. For smooth potentials, the Fourier transform vanishes at high
frequencies and so scattering data have a trivial asymptotic behaviour. However, for some
singular potentials (see e.g figure 3), the Fourier transform never ceases to oscillate. This
induces an apparently chaotic behaviour in the scattering data.

However, the£?-Fourier asymptotic of finite measures follow a general drift, which
is governed by their fractal 2-wavelet dimension [Hol94a]. For positive measures, the 2-
wavelet dimension reduces to the classical correlation dimension, which is perhaps better
known. One of the usual definitions of this last dimension is the following [Pes93].

For any positive measurg, define the function

Qy(r) = / dV(x)V(B(x, 1))
where B(x, r) is the ball of radius- around the poink. The quantities

DH(V) = lim SupIog Qy(r) log 2y (r)

D= (V) = liminf
r—0 I V) r—0 |Ogr

are called the upper and lower correlation dimensiof pfespectively. WheD~ (V) and

DT (V) coincide, we writeD (V) for their common value and call it simply the correlation
dimension. Heuristically, these dimensions indicate the rate of correlation of the measure.
Indeed, suppos¥ is a probability measure. Then, if you pick randomly two pointsaand

x, according to the law/, the probability that they are closer thans given by

Probaixs —xol <) = [ dV ()Y () Ly
_ / dV (1) dV (») Lyepien

=/ dV(x)V(B(x, 1))
= Qy(r).

For positive finite measures, it was shown in [GH95a] that fReé-ourier asymptotic is
governed by the correlation dimensions. Precisely, we have

Lemma 2.2 ([GH95a]) For any finite positive Radon measweon R,

109(focz<, BIVEP)

limsup =1-D (V)
p—>0 log p

lo d& |V ()2
liminf, . o Woce<, EIVEOD _ 1—D*(V).

log p

For signed measures, the correlation dimensions are not sufficient to characterize the Fourier
asymptotic. The relevant dimensions in this case are the upper and lower wavelet dimensions
Kzi introduced in [Hol94a]. They are defined via the following procedure: take some
function g in S*, that is a function in the Schwartz class whose Fourier transform is
supported by positive frequencies only, and consider the wavelet transforvh with

respect tog,

W,V (b, a) = (8a* V) (b)
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whereg, (x) = a 1g(—a1x) is essentially a dilated version gf Now set

Gy(a) =f db|W, V (b, a)|?

r()—min{/”“G()/”“G()}
o) = a;ga,ozga.

Then the 2-wavelet dimensiomg*(V) are defined as
. logl,(a)
F(V) = limsup——2—

K2 (V) =M 1oga

and do not depend on the chosen functipnn ST providedg # 0. They satisfy the
following

and

logT,(a)

V) =l g,

Lemma 2.3 ([Hol94a)) If V is a finite complex Radon measure, then
l0g(foeee, dEIVEIP)

lim sup = (V)
—00 I
VeLi® - and ’ log( | OZ;V@)F)
0
imint Io<e<y = —k, (V)
min log p
or
log( d ‘7( )2)
lim sup & fafo FWVEOD _ —kz (V)
V € L2(R) and o log( . dg;V(S)IZ)
0]
fiminf — o= =~k (V).

The next theorem is a direct application of lemma 2.3.

Theorem 2.4 Let V be a finite, real Radon measure with compact support angoléie
some real number greater thi#i ||/2. Then eitherV ¢ £2(R) and

log /,. dp'p”Ir(p")I?

limsu Po = —; (V) (=1-D (V)if V>0)
ﬁ—>oop log p 2

lo p dp’ /er( /)|2
fiminf —ote PPN vy @ 1- D) iV 20

p—>00 logp
or V e £L?(R) and the previous limits are zero.

Proof. The proof is elementary but we give it anyway for the convenience of the reader.
Take somepg > ||V||/2 and define the functions

P
1(p) =/ dp'p"?Ir (phI?
Po

p A~
J(p)= [ dEvVE)2

Po
It suffices to show that
log I | log |
091D _ jimsup'©97 P iming 1091 _ i g 1097 (P)
p—oo lOgp p—oo lOgp p—co logp p—~oco  logp

(2.8)
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n=0

n=1

n=

-1/3 +1/3

Figure 4. The first steps of the construction of a Cantor measure.

From equation (2.7), we have

I(p) =J(p) + O(log p).
Now log(x + y) = logx + O(y/x) and thus
log7(p) _ logZ(p) i <1> _
log p log p J(p)

Since J(p) is an increasing function, it either converges to some positive constant or goes
to infinity. If it converges, therd (p) = O(log p) and

(2.9)

lim log ! (p) —im log J (p) _0
r—oo logp p—~oco logp

If J(p) diverges, then (2.8) follows from (2.9). O

3. Scattering on self-similar measures

We now consider the case of a potential given by a self-similar measure. A self-similar
measure orR was defined by Hutchinson [Hut81] to be a probability measursatisfying

Condition 3.A (Self-similarity equation.)V = "V, p;V o §;*

where thep; are a set of weights (& p; < 1, Z,N:l pi = 1) and thesS; a set of similarities
S;(x) = l;x + b;, with 0 < [; < 1. The support ol is the unique non-empty compakt
globally invariant under these contractions, .= UY_, S;(K). This support may be of
zero Lebesgue measure. This occurs when the following condition is satisfied.

Condition 3.B (Strong open set condition [Str93].) There exists a closed bounddd set
such thatS; (U) N S;(U) =0 fori # j.
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Figure 5. logs Ir(p)|? against log(p) for the standard triadic Cantor measupg (= p» =

.11 =l = ), whose correlation dimension & = log2/log 3 ~ 0.63. Although the curve
seems to follow a general drift, the linear regression is very pag¢ 0.531) and gives anyway

a wrong dimensionA >~ —3.72 « —2D. Besides, note how the self-similar structure reappears

in the triadic blocks [3,3"tY],m =1,2,....

T T Y Y T 4 T T
2p e
_—
.,,u.a"ﬁ
.--W'j
.q.u‘-""".
0 e
Cor T
.2.["/‘ J
/
{
“ { 4
N -
i i 1 L L s i f
1 2 3 4 5 8 7 8 9 10

Figure 6. logs(/f{ dp’p?|r(p')|?) against log(p). Once|r(p)|? has been integrated, it gives
the right correlation of the Cantor measuré:~ 0.372~ 1 — D, with p = 0.992.

It can be shown that the sét at least contain&. For measures satisfying condition (3.B),
the upper and lower correlation dimension coincide (= D~ = D) and are given by the

implicit equation (see e.g [GH95b]):

N
Yo =1 (3.1)
i=1

This implies, in particular, that & D < 1. If, furthermore:
Condition 3.C (Equicontractivity condition.) All the contraction ratios are equal, that is
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] Y Y y

T T Y T T Y

Figure 7. logs Ir(p)|? against log(p) for the triadic Cantor measure with weights = 711
and pp = 231. Again, the linear regression gives a wrong dimensiorn~ 0.542 whereas the
theoretical dimension is.828.

L T T T T T T T T T
I /.—w”"f-
Vs
e
2}k T J
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e
.;'J‘".“
0 .
Lol

I / r
st J
s . s . ) . . A L ;

0 1 2 3 4 3 ] 7 8 [ 10

Figure 8. logs(/{ dp'p?|r(p')|?) against log(p). The linear regression gives an excellent
approximation of the correlation dimensioA: ~ 0.578~ 1 — D, with p = 0.998.

L=1i=I...,N,

then D is given explicitly by

N 2
D= log> ;. p; .

~ log!

The casep; = py = % andl; =1, = % reduces to the well known triadic Cantor measure
whose dimension i® = log 2/ log 3.

The £?-Fourier asymptotic of self-similar measures has been studied in [Str90], [Str93]
and [LW93]. The last authors stated the most general result. They showed (among other
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30
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Figure 9. Same as figure 7 but the weighis and p, are randomly exchanged at each stage of
the construction of the measure with probability a half. The theoretical correlation is unchanged:
D = 0.428. The experimental dimension.469 = —A — 2 with p = 0.963) is still wrong;
however, the smoothing effect of randomness makes it closer to the theoretical dimension.

Figure 10. logs(f7 dp’p’?|r(p")|?) against log(p). A ~ 0.578~ 1 — D, with p = 0.997.

things) that if the strong open set condition holds (the needed condition is actually more
general), then

/ de|V(E)? ~ RVP (3.2)
0<E<R

where the notatiory ~ ¢ meansCf < g < C'f for someC’ > C > 0. An immediate
consequence is:
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Proposition 3.1 If V satisfies conditions 3.A, 3.B and 3.C, then

P
dp'p?lr(phI?> ~ p*=P
Ppo

where D is given by (3.1).

We wish now to show that the self-similar nature of the scatterer can be recovered in the
scattering data. As was first shown in [Hol94b] in the case of the triadic Cantor measure, the
self-similarity of measures allows a renormalization procedure for their Fourier transform.
Let us introduce the following definition. A tempered distributipne S'(R) is said to
have a large-scale renormalization if there exjgts C, « > 1 and a non-zero distribution
n* € S’(R) such that

w* — lim g"n(a"-) = n*
n—o0
the convergence taking place in the weatepology of S’(R). Conversely, a distribution
is said to have a small-scale renormalization araxpidifor 8 € C,a <l andn* £#0e€ &’
w* — lim g"n(a" (- — xo) + x0) = n*.
n—oo

In order to obtain a result concerning the renormalization of the scattering amplitude

we have to suppose that the following condition holds Wor

Condition 3.0V % V satisfies the strong open set condition, wheg) = V (—x).

We have the following result.

Theorem 3.1 Let V be a self-similar measure satisfying conditions 3.A and 3.B. Then
has a small-scale renormalization around each fixed ppiat —b;/[; of the similaritiess;.
Consequently, &V (¢) has a large-scale renormalization. If, furthermore, conditions 3.C
and 3.D hold, then|V|? has a large-scale renormalization. Precisely, we have that
"N, pA "IV (I~ [? converges inS'(R).

Proof. The measuré/ satisfies, in the sense of the distributions,
N Di
Vi)=Y “VosS ).
() ; A

If we fix somesS;, we have

ll' li j —
oS-V =Y Pyestosm
pi £ lipi

and consequently

I n+1 N I n ln+lp‘ 1 1

i i i j —

() vesr= () ves =2y
J#LLiPi

for all integern. Now the strong open set condition implies tIS¢n1 o S;(K)NK = ¢ for
all i # j, wherek is the support ol ThusSj”*lon(K)mSj"(K) = ¢ for all integern,

that is
I n+1 I n
sup;((’) VoSt — () Vo Sf) NS™(K)=40. (3.3)
Pi Pi
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Now take somep in S(R) and define

a, = (ll> /deoSf(x)(p(x).
pi

Let us show that, is a converging sequence. Clearly, we have

I n+1
it = () { f */ } drV o /0 ()
pi xeST"(K) xeSTHENST (K)

that is, in view of (3.3),

li n+1
Apy1 — Ay = <> / dxV o Sl.”+l(x)g0(x). (3.4)
pi xeST"HK\S;(K)

At this point, suppose is of compact support. Then we can find some intejyersuch
that for alln > N, x € S;" 1 (K)\S;"(K) N suppp) = @, in which case the right-hand
side vanishes ang, 1 = a,. This means thafl;/p;)"V oS! converges irD’(R) = Cgo’ (R)
towards some distributio;*. Now the primitive of V;* is polynomially bounded. Indeed,
for any R > 0 and any integer such that sup@;*) N[—R, +R] C S;"(K), we have

/ V*(x) dx g/ de(x)+/ deVoSi(X)Jr-'-
|x|<R xek xeSTHK) Pi

pi
Sincen ~ —log R/ log!;, this yields

f V*(x) dx
[x|<R

ConsequentlyV;* is a tempered distribution. It follows that the convergencé;gp;)" VoS
can be extended t8'(R) because ifp € S(R), then

li ! - —n
--+/ dx() VoSi)=1+p 4t p.
xS (K)

< O R'°9pi/logli

ni1 — ap < sup / dxV*(x) < O™ Vm € N
xeSTTHRONST(K) JxeSTTHE)

and @,) is a Cauchy, therefore converging, sequenc€.in

SinceS! = I (x — x;) + x;, this means thaV has a small-scale renormalization around
x;. We only need to take the Fourier transform (in the sense of distributions) to obtain a
renormalization forV:

pi "€ IV (1) — €5V (E).
Now for the second part of the proof, it is easy to see that i equicontractive, then
V % V is still self-similar with
V*V=Zp,~p.,-V*‘~/oSiq_jl+UV*‘70Sal
i#]
with S; ;(x) = Ix +b; — b;, So(x) = Ix, ando = Y p?. If condition 3.D holds, therV x V
has a small-scale renormalization around 0, the fixed poiryof

w*. lim (1)(V*Vxﬂo=n
n—+oo \ 0

for somen in §’. Passing to the Fourier transform gives, foralin S,
lim o"|V{I™") %) = ii(p) (3.5)
n—+o0o

that is|V |2 has a large-scale renormalization. O
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We wish to apply this result tgr(p)|2 ~ |V (2p)|?/p?. However, the space of large-
scale renormalizable functions is not stable under multiplication by homogeneous functions
p*, A < —1. To remedy this problem, we restrict the space of test functions. We define
Spos(R) the subset ofS(R) of functions with support inR* only and we consider the
renormalization irLS‘i;os(R) rather thanS’(R). Sincer(p) is a priori not entirely defined on
R*, we extend it by setting(p) =0 if p < ||V||/2. Then, we have:

Proposition 3.2 Assume conditions 3.A, 3.B, 3.C and 3.D to hold. Thetp)|? has
a large-scale renormalization &},,(R). Precisely, we have that? SN pHTrA)?
converges inS’(R).

Proof. Take some functiop in Spos(R). By (2.7) we have

/ dp72'a " 1r (7" p) 120 (p)

"} 17" p)|2
=<f‘”/dp %w(p)+l‘2”0‘”/dp¢(p)e(l‘”p)

wherele(p)| < O(1/p®) is the error term. Let us call, and J, the first and second terms
of the right-hand side, respectively. By (3.3),converges towardg(¢/p?). On the other
hand, we have

[, <l"a‘”0(/ dp @
p

Now o = YV, pi? > Y, N-2 = N1, whereas the strong open set condition imposes
I < N1 Thusloc~! <1 andJ, — 0. Hence,

(o) " rd ") (p) = R* (@)
where R*(¢) = 7i(¢/p?). This completes the proof. O

4. A numerical procedure

We now wish to illustrate some of the above results with a numerical experiment in the basic
case of self-similar potentials. In particular, we want to insist on the fact that the correlation
dimension of the potential can only appear via an integration of the scattered intensity. To
be more precise, suppose the potential is modelled by the triadic Cantor méasite
Fourier transform is given by the infinite product

Ve(p) = [ [ cos3/mp).
=0

Now |V¢|2 has a local maximumVc(z)|? at every pointp = 3"z and a local minimum 0
at every pointp = 3'(7/2)n € N. Consequently, limsugog|r(p)|?/log(p)) = —2 and
lim sup(log |7 (p)|?/ log(p)) = —oo, that is only the trivial behaviour df(p)|?> may appear.

We are going to describe a numerical procedure to compute the exact reflected amplitude
on self-similar potentials. Since these latter are ideal mathematical objects, we can only
approach them by constructing ‘finite’ fractals, that is measures involving a finite number
of iterations. More precisely, consider a self-similar meadurgatisfying the strong open
set condition and

N .
v = %v o 571 (x) (4.1)
i=1 "t
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for a set of weightg p;} and similaritiesS; (x) = [; (x —x;)+x;, With x;= 0 < x,.. < xy= 1.
Now take x the characteristic function of the unit interval and form thth order
approximation:

Vo=1x
V,(x) = EiN izlﬁ...&x oSi_lo"-OSi_l(x).
Lseees n li1 li,, n 1
It can be shown thaty — limV, =V, n — oo, and||V,|| = |V| = 1. Thus, in view

of section 2,ry, (p) — ry(p).

Now, since the approximated measunés are piecewise constant functions, we can
computery, (p) with the method of transfer matrices. Each transfer ma#tixV,, p) can
be decomposed into a product 8f' elementary transfer matrices corresponding to each
square part of the potential. Rather than compufifigmatrices, we shall here make use of
the self-similarity of the potential. Looking at the self-similarity equation (4.1), we see that
annth-order approximation oV is a sum ofN disjoint measures being th@ — 1)th-order
approximations of p;/1;)V o Slfl,i =1,..., N. So we have, with obvious notation,

MV, p) =M (‘l’g(v o S,-‘l)nl,p) M (’l’ll(v e p)

the transfer matrix on the zero-order approximations being known analytically. Thus, for
eachn, the transfer matrix\(V,,, p) can easily be computed by a recursive procedure. This
gives a numerical expression foy, (p). Now let us retrieve the correlation dimension via
the reflection amplitude. Therefore, we need to estimate the error induced Aih-ander
approximation. It has been shown in [Gue95] that

4 1
T T R (ps> | .2)
This yields

p p
‘ /1 dp'p”Iry, (p)I? — fl dp'plrv (PP < 0" p?) + O (D).
On the other hand, we know from (3.2) thAt dp’p”|rv(p')|? is of order p~P. Thus,
taking!” <« p~2, we are ensured that the relative error we commit is negligible. In figures 5—
8 we show an application of this method to the triadic Cantor measure. A comparison is
drawn with random self-similar measures. On each figure, we have made a linear regression
y = Ax + B and indicated the coefficient of correlatign
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